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Kirkwood-Buff �KB� solution theory is a means to obtain certain thermodynamic derivatives from knowl-
edge of molecular distributions. In actual practice the required integrals over radial distribution functions suffer
inaccuracies due to finite-distance truncation effects and their use in closed systems. In this work we discuss
how best to minimize these inaccuracies under traditional KB theory. In addition we implement a method for
calculating KB quantities in molecular simulations with periodic boundary conditions and particularly within
the canonical ensemble. The method is based on a finite-Fourier-series expansion of molecular concentration
fluctuations and leads to more reliable results for a given computational effort. The procedure is validated and
compared to the original method for a nonideal liquid mixture of Lennard-Jones particles intended to imitate a
real system, carbon tetrafluoride, and methane.
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I. INTRODUCTION

There are multiple ways to get free-energy-related prop-
erties from statistical mechanical computations. For instance,
one can use thermodynamic integration, Widom’s method,
and free-energy perturbation methods in general �1�.
Kirkwood-Buff �KB� solution theory �2� is another route to
free-energy-related properties, in particular partial molar vol-
umes and composition derivatives of chemical potential. Iso-
thermal compressibility also can be calculated by the
method.

The KB method is related to the local-composition con-
cept used in continuum thermodynamics to correlate and pre-
dict activity coefficients. The basic idea is that all the infor-
mation about macroscopic free-energy-related properties is
embedded in the way that molecules of the same and differ-
ent species associate, as manifested by composition and den-
sity variations in a local �molecular� level. This concept is
found in Debye-Hückel theory and its extensions �3� and in
liquid-mixture activity-coefficient models by Wilson and by
Prausnitz, among others �4,5�. Because fluid microstructure
can be obtained both by statistical mechanics calculations
and by scattering experiments, over the last several decades
KB theory has provided a useful connection between these
methods and macroscopic thermodynamic observables.

In this work we consider ways to improve the accuracy of
quantities calculated using KB theory. We develop an alter-
native implementation of KB theory for use in molecular
simulations with periodic boundary conditions and particu-
larly with fixed numbers of molecules. We validate and test
the method, comparing it to the original KB implementation
for a nonideal liquid mixture of Lennard-Jones �LJ� particles.
For this system the method more accurately predicts the
proper thermodynamic derivatives for a given simulation cell
size and computational effort, meaning it is a more numeri-
cally efficient method.

II. KIRKWOOD-BUFF SOLUTION THEORY

The basis of Kirkwood-Buff solution theory is to connect
thermodynamic free-energy properties to integrals over ra-

dial distribution functions gij�r� in a grand canonical ��VT�
ensemble. The details are available in the original 1951 paper
by Kirkwood and Buff �2� as well as a later review by New-
man �6� and a compilation volume edited by Matteoli and
Mansoori �7�. We summarize here the general results for a
macrohomogeneous mixture of n species.

Note that equations in this paper are given on a molecular
basis rather than a molar basis; to effect the latter, one must
simply substitute the gas constant Rg for Boltzmann’s con-
stant kB, as well as take Ni and N to be numbers of moles
rather than numbers of molecules. We use subscripts i, j, and
k as species indices ranging from 1 to n, unless otherwise
specified.

A. Pairwise distributions

To start we define a symmetric dimensionless matrix A
according to

�A−1�ij = �N�−1��NiNj� − �Ni��Nj�� , �1�

where N is the fluctuating total number of molecules and Ni
is the corresponding number for species i. Angle brackets
� . . . � have the traditional meaning of a statistical mechanical
ensemble average. Note that our definition of matrix A in-
tentionally differs by a factor of �N� from that of the original
KB paper, in order to make elements of A intensive proper-
ties �i.e., not explicitly dependent on system size�. Kirkwood
and Buff related the above fluctuation expression to pairwise
distributions, which we state in matrix form

A−1 = Y + �YGY , �2�

where �= �N� /V is average total concentration. Diagonal ma-
trix Y is defined by Yij =�ijyi, where �ij is the Kronecker
delta and yi= �Ni� / �N� is average species mole fraction. In
Eq. �2� the first term on the right reflects the correlation of a
molecule with itself. G is the symmetric matrix of so-called
Kirkwood-Buff integrals, which express correlations be-
tween neighboring molecules or equivalently express the lo-
cal composition deviations about molecules*dean_wheeler@byu.edu
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Gij = �
0

�

�gij�r� − 1�4�r2dr . �3�

For an ideal �Lewis� mixture only the diagonal elements of
matrix G are independent, with the off-diagonal elements
given by Gij =

1
2 �Gii+Gjj� �8�. For an ideal-gas mixture all

Gij =0. For finite-size simulations, the upper limit of integra-
tion in Eq. �3� cannot be infinity and must instead be some
finite radius rc—a matter discussed more fully below.

As an aside, we note that Eq. �2� is related to structure
factors obtainable from scattering experiments. Various
structure factors have been defined in the literature �9,10�,
and each is basically a spherically symmetric Fourier trans-
form of some type of pair correlation function �g�r�−1�. We
define here a dimensionless partial structure factor Sij as

Sij�q� = yi�ij + yiyj��
0

� sin�qr�
qr

�gij�r� − 1�4�r2dr , �4�

where q is the magnitude of a reciprocal lattice vector or
momentum change vector. In particular, q=4��−1 sin� 1

2��,
where � the radiation wavelength and � is the scattering
angle. In the limit q→0, Eq. �4� reduces to Eq. �2�, namely,
Sij�0�= �A−1�ij. However, one cannot measure the q=0 values
directly but must instead extrapolate experimental results to
q=0. Furthermore, determination of Sij from x-ray diffrac-
tion experiments is not straightforward, given that one ob-
tains linear combinations of elements of matrix S and a de-
convolution must be made. Through isotopic substitution,
neutron diffraction better enables direct measurement of
partial structure factors.

B. Thermodynamic derivatives

Kirkwood and Buff �2� showed that A is a matrix of de-
rivatives of chemical potential

Aij =
N

kBT
� ��i

�Nj
	

T,V,Nk�j

. �5�

Recall that species chemical potential can be expressed as
�i=�i

0+kBT ln�	iyi�, where 	i is a species activity coeffi-
cient and �i

0 is a pure-component chemical potential that
depends on temperature T and pressure P.

Equation �5� is a foothold for deriving other thermody-
namic properties. For instance, we can generate the partial

volumes V̄i= ��V /�Ni�T,P,Nk�i
and isothermal compressibility


T=−�� lnV /�P�T,Ni
in terms of elements of A. The column

vector of species partial volumes is given by

V =
1

�

Ay

yTAy
, �6�

where y is the column vector of species mole fractions. Su-
perscript T indicates a matrix transpose so that matrix opera-
tion yTAy results in a scalar quantity. By definition the ther-
modynamic constraint yTV=�−1 is satisfied. It turns out that
simulated partial volumes are generally the most reliable of
the properties obtained from KB theory; it appears that sys-
tematic biases in the elements of A are largely canceled in
the ratio that produces V.

The isothermal compressibility is given by


T = �yTAy�−1
T
ig, �7�

where the ideal gas compressibility is 
T
ig= ��kBT�−1. Note

that for a single-component system one can use the above
relations to derive


T = �1 + �G11�
T
ig, �8�

which is known as the Ornstein-Zernicke relation or com-
pressibility equation. For low-temperature liquids 
T�
T

ig;
therefore, in this case KB integral G11 is negative and 
T is
the small difference between two nearly equal quantities.
One can generalize this to state that for liquids relatively
small errors in KB integrals can lead to relatively large errors
in calculated 
T �11�.

Furthermore, we wish to calculate a quantity known as the
activity-coefficient correction matrix, which expresses the
composition dependence of chemical potentials in terms of
mole fractions, at constant T and P.

Qij =
yi

kBT
� ��i

�yj
	

T,P,yk�j,n

= �ij − �in + yi� � ln 	i

�yj
	

T,P,yk�j,n

.

�9�

Q may be related to matrix A from a combination of ther-
modynamics principles and matrix algebra:

Q = Y�A −
AyyTA

yTAy
	I0, �10�

where Iij
0 =�ij −�in. Note that for the partial derivatives of Eq.

�9�, yn is allowed to vary at the same time as yj in order to
maintain the constraint 
iyi=1. This means that species n is
specially selected as a reference species in the formulation
above. Matrix Q as defined here has dimensions n�n but
contains only 1

2n�n−1� independent parameters in general. It
is constrained by the following relations: Qij /yi−Qji /yj
+ �Qni−Qnj� /yn=0, Qin=0, and 
iQij =0. The first relation
follows from the symmetry of matrix A and the last relation
follows from the Gibbs-Duhem principle. For an ideal mix-
ture Q=I0.

Matrix Q contains the second derivatives of Gibbs free
energy with respect to mole fractions and has multiple uses.
It can be used in diffusive constitutive equations to deter-
mine parameters for activity-coefficient models and to evalu-
ate phase stability at a composition point. For example,
phase stability in a binary mixture requires that Q110. An
application of interest to the authors is to model multicom-
ponent diffusion with a driving force derived from a chemi-
cal potential gradient as used in the Stefan-Maxwell consti-
tutive equation that has been extended for use in nonideal
solutions �12–14�. To do this we need to relate the chemical
potential gradient of each species i to n−1 independent spe-
cies composition gradients. This requires use of an �n−1�
� �n−1� submatrix of Q �15�. Such an activity-coefficient
correction has been calculated previously for mutual diffu-
sion in binary mixtures using KB theory �11,16,17�.
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Matrices A, S�0�, and G are symmetric and each in gen-
eral contains 1

2n�n+1� independent parameters. This infor-
mation is encapsulated in the set of matrix Q, vector V, and
scalar 
T. If one has reliable values of these latter quantities
in hand, the above equations can be inverted to obtain the
former in order to check consistency or develop theoretical
relationships. The general inversion equation to obtain KB
integrals is

�G = − Y−1 + Y−1�I0 + yyT�

� �Q + �YV��VTI0 + yT�

T

ig


T
�−1

. �11�

An expression equivalent to this for binary mixtures has been
published previously �8�.

III. APPLICATION OF KB THEORY TO A PERIODIC
SYSTEM

The fluctuation formula for A−1 formally requires an open
system. When KB solution theory is implemented in a more
computationally convenient ensemble with fixed molecule
numbers, such as canonical or NVT, the hope is that the
theory still can be used to obtain reasonably accurate results.
If the KB integrals �Eq. �3�� are performed out to maximum
spherical radius rc=0.5L, they are sampling approximately
half of the volume of a cubic unit cell of edge length L.
Because the sampling volume occupies only a portion of the
full system, the sampling volume can exchange mass with its
surroundings and be considered an open system under con-
straint, one which approximates a grand canonical system to
order N−1 �18�. Unfortunately, Kirkwood-Buff integrals may
not have converged to “macroscopic” values when truncated
at 0.5L for typical simulation sizes. Possible remedies in-
clude an extrapolation to rc→� through an empirical fit of
radial distribution functions �19� or use of integral equation
theories �20�; however, one must be cautious because results
from KB theory are quite sensitive to small errors in gij at
large r values. As we illustrate below, oscillations in the KB
integrals can be smoothed, but this does not remedy the sys-
temic biases due to a too-small system. It appears the only
fail-safe way to manage the truncation error of explicitly
simulated Kirkwood Buff integrals is brute force: increase L
�and rc�, resimulate, and repeat until apparent
N-independence is achieved.

We propose here an alternative formulation that accounts
for the periodic boundaries of the simulation unit cell as
commonly employed in molecular simulations. As before, a
fluctuation expression is applied to a portion of the total
volume within a closed simulation �such as NVT�. Rather
than the sampling volume for Eq. �1� being a sphere centered
on a single moving molecule, the sampling volume is instead
composed of one or more rectangular-slab-like regions that
are stationary with respect to the simulation cell. Debenedetti
performed a similar division of a closed simulation cell into
two or more open subcells to study fluctuation phenomena
�21�.

A. Structure factor from simulations

In order to count the particles in the designated sampling
volume, we propose an expression for particle concentration
that is consistent with the periodic boundaries. The fluctua-
tion of the species concentration field from its equilibrium or
average value can be described with a three-dimensional dis-
crete Fourier series:

��i�r,t� = � 

q�0

�i�q,t�eiq·r, �12�

where r is a position vector, t is time, and �i is a dimension-
less Fourier coefficient or single-molecule structure factor.
Vector q is a reciprocal lattice vector of the unit cell and i in
the exponent is the imaginary number. For a cubic cell of
length L we get the set of discrete wave or reciprocal lattice
vectors

q =
2�

L m1

m2

m3
� , �13�

where m1, m2, and m3 are independent integers. Note that
q= �q�. For simulations there is an upper bound qc on the
discrete q values one cares to use. In this work we set qc
=2�L−1�17. After excluding q=0, this makes 760 unique
lattice vector pairs ��q� within that cutoff.

Fourier mass coefficient �i is calculated in a simulation
from instantaneous molecular positions:

�i�q,t� = �i�q�
1

N


a�i

e−iq·ra�t�, �14�

where ra�t� is the center-of-mass position of molecule a of
species i and the sum is over all molecules of species i. We
note that fluctuations about equilibrium should average to
zero, ���i�= ��i�=0, except in the case of stable multiphase
systems.

As structured molecules are not Dirac-delta points of
mass, Eq. �14� includes function �i to effect a spatial “smear-
ing out” of the molecule

�i�q� = e−q2rg,i
2 /6. �15�

In this formula, each molecule of species i is assumed to
have an isotropic spatial distribution of mass with rg,i being
the radius of gyration. Equation �15� is consistent with
“Guinier’s law” that is used in interpreting scattering experi-
ments and is considered reasonably accurate even for non-
spherical molecules when qrg,i is of order 1 or less �22�.
Because function �i does not depend on the dynamics, if
desired it can be omitted from Eq. �14� and reintroduced into
the results after the conclusion of the simulation. In the
present work we use Lennard-Jones particles to represent
structured molecules and take �i�q�=1 for simplicity.

B. Sampling volumes

Our objective is to choose a sampling volume that is com-
mensurate with the periodic concentration fluctuations inside
the cell—in fact we choose a separate sampling volume for
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each lattice vector q�0. We then calculate the instantaneous
particle-number fluctuation, �Ni=Ni− �Ni�, corresponding to
each sampling volume. This can be accomplished by inte-
grating the concentration deviation ��i across the cell using a
normalized weighting function � to select the desired re-
gions:

�Ni�q,t� = �
V

��i�r,t���q · r�dr

= � 

q��0

�i�q�,t��
V

eiq�·r��q · r�dr

= N�i�q,t� , �16�

where

��s� = �1 − i + e−is� . �17�

The weighting function is complex or in other words the
sampling volume is complex, serving to maximize the com-
putational efficiency of the method by incorporating infor-
mation on both phase and amplitude of fluctuations. Because
� returns nondiscrete values, the sampling volumes have
“fuzzy” boundaries, leading to a continuous change in occu-
pancy as particles move relative to the boundaries. This is in
contrast to the method of Debenedetti �21�, in which fluctua-
tions result in strictly integer occupation numbers for each
sampling volume and time. The weighting function given by
Eq. �17� was chosen specifically to isolate fluctuations for a
single lattice vector, that is, to generate �Ni�q , t� that depends
only on a single corresponding Fourier coefficient �i�q , t�. In
fact, the particular geometry of the sampling volume is im-
material as long as it fulfills this role.

The piecewise sampling volumes for each lattice vector
effectively constitute separate fluctuation experiments, each
yielding a set of �Ni that goes into Eq. �1�. For convenience
we reuse the notation S=A−1 to give

Sij�q� =
1

N
��Ni�q,t� · �Nj�− q,t�� = N��i�q,t� · � j�− q,t�� .

�18�

Note that � j�−q , t� is the complex conjugate of � j�q , t�. Any
imaginary quantities inside the angle brackets average to
zero. Thus, as expected, matrix S is real and symmetric. One
also wants to be sure that ��i��0 as expected for homoge-
neous single-phase systems. One way to gauge this is to
compare Sij above to

Sij
0 �q� = N��i�q,t���� j�− q,t�� �19�

calculated from the same trajectory. Expressions for Sij�q� in
terms of molecular positions have previously been noted
�23�, but we are not aware of such being used previously to
simulate Kirkwood-Buff quantities as is done in this work.

With S=A−1 in hand, we can obtain a self-consistent set
of thermodynamic properties for any lattice vector of our
choice, excluding q=0. The calculated properties in general
have a dependence on q; although for isotropic materials the
results should depend only on magnitude q= �q�. Therefore,
the results for equivalent discrete vectors �same q value� are

averaged following the ensemble averaging in Eq. �18�. As
with Eq. �4�, in order to obtain properties in the thermody-
namic limit �to compare to macroscopic experiments�, one
must then extrapolate the results to q=0. Obviously the ac-
curacy of this extrapolation depends on simulation uncertain-
ties and how rapidly a particular property varies as q→0.
The extrapolation procedure used in this work is described
below, accompanying the simulation results.

For an infinite-size system, the definitions of S in Eqs. �4�
and �18� are equivalent. However, for finite systems, the pa-
thology observed for KB integrals �Eq. �3�� is also observed
for the integral in Eq. �4�. That is, truncation of the integrals
at maximum available radial distances can lead to large er-
rors. The advantage of Eq. �18� relative to Eq. �4� is that the
reformulation is based on a discrete Cartesian-based Fourier
transform, rather than a continuous, spherically symmetric
Fourier transform. The sampling volumes of the method do
not truncate intermolecular correlations at a maximum radial
distance; no assumption is made that gij =1 at large intermo-
lecular separations, an assumption generally violated for
closed systems �2�. In summary, we have a means of calcu-
lating matrix A that is consistent with periodic boundary
conditions and is immune to long-range truncation effects.

C. Extending the cut-off radius of KB integrals

To better understand and possibly ameliorate the limita-
tions of KB theory as it is normally implemented in periodic
simulations, we examined the effect of the cutoff or trunca-
tion radius rc on the KB integrals and resulting thermody-
namic properties. Changing rc is in effect changing the frac-
tion of the unit cell that is included in the sampling volume.

What happens if one extends rc beyond 0.5L in a periodic
cubic system? It leads to biased results if the integration is
done in a purely spherical fashion because then one is begin-
ning to double-count interactions between some pairs of
molecule images and to incorporate into Gij anomalous long-
range order resulting from the periodicity of the system. For
instance, at rc=L one would observe a molecule interacting
with its own image, leading to a crystal-like spike in gii.
Instead, for rc0.5L we extend the KB integrals “into the
corners” of the unit cell to include additional unique mol-
ecule pairs without double counting. In effect this makes the
integration volume a sphere circumscribed or bounded by a
co-centered cube of length L. The running KB integrals for a
periodic cubic system become

Gij�rc� = �
0

rc

�gij�r� − 1�
dvs

dr
dr . �20�

Function vs�r�, which is plotted in Fig. 1, provides the
bounded volume out to radius r:

vs�r� = L3�
�

6
x3 if 0 � x � 1

−
�

3
x3 +

3�

4
x2 −

�

4
if 1 � x � �2

p�x� if �2 � x � �3,�
�21�

where x=2r /L and
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p�x� = �x2 − 2 + �1 − 3x2��atan��x2 − 2� −
�

4
�

+ x3�atan�x�x2 − 2� −
�

3
� . �22�

One can calculate directly Gij from recorded pair dis-
tances during a simulation without relying on numerical in-
tegration:

Gij�rc� = vij�rc� − vs�rc� , �23�

where

vij�rc� =
V

Ni�Nj − �ij��

a�i



b�j

b�a

��rc − rab�� , �24�

where � is the Heaviside step function and rab is the nearest-
image distance between molecules a and b. The double sum
is over all molecules a of species i and molecules b of spe-
cies j in the system, excluding b=a in the case i= j. Function
vij is implemented using histograms �arrays of bins� in terms
of discrete rc values. Furthermore, one can obtain the radial
distribution function gij�r� by combining Eqs. �20� and �23�
and taking the derivative with respect to rc. The result is
gij�r�=dvij /dvs �r, where the derivative is implemented as a
finite difference using the histograms created for vij.

Running KB integrals basically exhibit a pattern of
damped oscillations. Thus, another step to improve the re-
sults is to employ a smoothing filter so that the results are
less sensitive to the exact choice of integral cutoff rc. Here
we use a Gaussian kernel to effect the smoothing of some
property f calculated from running KB integrals, such as an
activity-coefficient correction, partial volume, or compress-
ibility. The smoothed value is

f��rc� =

�0
rmexp�−

1

2
s−2�r − rc�2� f�r�dr

�0
rmexp�−

1

2
s−2�r − rc�2�dr

, �25�

where s is a smoothing-distance parameter, taken here to be
0.3 nm, and rm=�0.75L is the maximum distance available
to the KB integrals.

IV. SIMULATION RESULTS AND DISCUSSION

A. Example LJ binary mixture

In order to test the results of the proposed methods, we
selected and simulated a series of liquid state points for a
nonideal binary Lennard-Jones mixture. The molecular-
dynamics method was used. The equations of motion in-
cluded an integral-control �Nosé-Hoover� thermostat and
were integrated using a fourth-order Gear predictor-corrector
scheme �24�. The radial cutoff for intermolecular forces was
set equal to 0.3L for the simulations with N=1200 and to
0.2L for the single simulation with N=4000—in each case
sufficient to include the three nearest shells of neighbors
about each molecule. The standard long-range correction to
pressure was used to account for interactions beyond the
force cutoff. The size of the time step was selected for each
simulation to generate a root-mean-square displacement of
molecules of 1.5 fm per time step. A Verlet neighbor list was
used to speed up computations �24�. �i samples were taken at
the same time as each update to the Verlet neighbor list, or
approximately every 45 time steps.

Table I gives the LJ parameters for the binary system.
Following Schoen et al. �25�, the parameters for the two
components were chosen to imitate carbon tetrafluoride �spe-
cies 1� and methane �species 2�, two molecules that are
roughly spherical. However, we took the methane parameters
from Vrabec and Fischer �26� because they better reproduce
liquid density than the methane parameters used by Schoen
et al. As for the cross interactions, we used the Lorentz com-
bining rule, �12= 1

2 ��11+�22�, but used a modified Berthelot
combining rule, �12= �1−k12���11�22, where k12=0.12. This
value was determined to approximate the experimental upper
solution critical point of Tcrit=94.5 K and y1,crit=0.43 �25�.

We assessed the presence of the liquid-liquid critical point
by performing preliminary NPT simulations at y1=0.4 and
two temperatures that bracket the critical point, 90 and 100
K. We compared the averages of Sij

0 �see Eq. �19�� at the two
points to ensure significant demixing only at the lower tem-
perature. A sharp increase in �Sij

0 � as q→0 indicates station-
ary large-wavelength variations in composition, which in
turn indicate an incipient or developed phase split. Schoen et
al. likewise used a trial-and-error procedure around the criti-
cal point to arrive at what would be the equivalent of k12
=0.30 in the �12 combining rule. However, this larger k12
value caused demixing over a wide composition range in our
simulations at 120 K. The system size used by Schoen et al.
was nearly five times smaller than that used in this work and
therefore may have suppressed the phase separation we ob-
served.

1

0.5

0

v s
/L

3

0.80.60.40.20

r / L

FIG. 1. Function vs�r� giving the volume of a sphere of radius r
bounded by a co-centered cube of length L.

TABLE I. Lennard-Jones parameters for binary mixture of CF4

�species 1� and CH4 �species 2�.

Species pair

11 22 12

��nm� 0.4150 0.3728 0.3939

� /kB�K� 175.0 149.0 142.1
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The simulated state points and a summary of results are
presented in Table II. In order to imitate a conventional mix-
ing experiment conducted at constant temperature and pres-
sure, a series of preliminary NPT simulations was performed
in order to determine appropriate cell volumes to use. Then
NVT simulations of length 106 time steps �half that for the
one larger simulation� following equilibration were per-
formed to obtain the results in Table II.

In order to facilitate comparison with other work based on
the LJ model, Table III lists the pure-component state points
and results from Table II in commonly used dimensionless
form. Both of these liquid state points are close to the LJ
vapor-liquid coexistence curve. In fact, pure component 1
�representing CF4� is essentially at the LJ triple point �27�.
Careful equilibration �avoiding large temperature swings, for
instance� was necessary to generate reliable starting configu-
rations for our simulations at 120 K due to the system’s
proximity to both liquid-liquid and vapor-liquid two-phase
regions.

B. Reference properties

In order to compare the results of the two KB methods
and ascertain reliability, we used two correlations for mixture
and pure-component properties. The first was the LJ-fluid
equation of state �LJ EOS� by Johnson et al. along with van
der Waals one-fluid mixing rules �27�. They showed that this
method reproduces simulated vapor-liquid equilibrium re-
sults for LJ-fluid mixtures quite well, and our results confirm
the accuracy of the method. The second correlation method
we employed was the well-known UNIFAC activity-
coefficient model �in this case indistinguishable from UNI-
QUAC �5�� as another way to get reference values of Q11.
Size and energy parameters for CH4 and CF4 species were
obtained from Gmehling and co-workers �28,29� and are
given in Table IV. It should be noted that these parameters

overpredict the liquid-liquid critical temperature by about 9
K.

C. Overall results

Figure 2 provides a summary and comparison of the re-
sults for the traditional implementation of KB theory �“old
KB”� and for the Fourier-based modification �“new KB”�,
both having been calculated simultaneously for each of the
simulations in Table II. It is important to note that all the old
KB points in Fig. 2 are “best case” results based on smooth-
ing of properties to reduce oscillations and choice of an op-
timal cutoff as discussed below. The volumes presented here
and in the following figures are given on a molar basis rather
than a molecular basis for ease in interpretation. Figure 2
also gives reference curves of the relevant thermodynamic
properties in order to assess accuracy of the methods. The LJ
EOS �plus mixing rules� matches the simulated constant-
pressure mixture volumes �labeled “NPT”� well, differing by
no more than 0.3% from any point. This gives confidence
that this reference method is reasonably accurate for volu-

metric properties, namely, V̄i and 
T. Furthermore, the agree-
ment between the LJ EOS and UNIFAC for Q11 is quite
good, lending additional confidence in the accuracy of the LJ
EOS for all three properties simulated.

For the system and properties studied here, the Fourier
modification to the KB method produces results in greater
agreement with the LJ EOS than does the traditional KB
method. As shown in Fig. 2�a�, both KB methods are gener-
ally reliable for partial molar volumes. There are a couple
noticeable deviation trends, however. First, the modified KB
method predicts partial molar volumes that depart further
from the mixture-volume curve than does the LJ EOS. On
the other hand, the traditional KB method predicts partial
volumes that are closer to the mixture-volume curve, with
significant deviations for dilute components. The origins of
both of these biases are discussed below. In both cases the
larger simulation size generated little change in the results.

As shown in Fig. 2�b�, the traditional KB method—even
with smoothing—produces significant errors in 
T, consis-

TABLE II. Parameters and results for NVT-simulated LJ binary systems, where T=120 K.

Mole fraction y1

0 0.1 0.2 0.4 0.4 0.6 0.8 0.9 1

N /1000 1.2 1.2 1.2 1.2 4 1.2 1.2 1.2 1.2

�−1�cm3 /mol� 39.0 40.6 42.1 44.6 44.6 46.9 48.8 49.6 50.6

�P��MPa� 0.90 0.75 1.07 0.93 0.87 0.84 1.12 1.05 0.91

time �ns� 3.47 3.62 3.80 4.24 2.12 4.87 5.91 6.76 8.14

L�nm� 4.27 4.32 4.38 4.46 6.67 4.54 4.60 4.62 4.65

TABLE III. Dimensionless state points for NVT-simulated LJ
pure-component systems.

i=1 i=2

T+=kBT /�i 0.686 0.805

�+=N�i
3 /V 0.851 0.799

P+= P�i
3 /�i 0.027 0.023

TABLE IV. UNIFAC size and energy parameters for CF4 �1�
and CH4 �2� �28,29�.

R1=1.780 Q1=1.820 a12=142.06 K

R2=1.129 Q2=1.124 a21=72.986 K
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tently overpredicting by nearly an order of magnitude. The
modified KB method shows remarkably good agreement
with the LJ EOS, with a slight overprediction bias. Notably,
the method correctly predicts the maximum in 
T with
changes in composition for this nonideal mixture. Figure 2�c�
similarly shows the inherent bias toward mixture ideality in
predicted Q11 values for the traditional KB method. The
modified KB method, however, reproduces the mixture cor-
relation curves quite well.

D. Analysis of the traditional KB method

We can generalize the old KB results in Fig. 2: the
method always biases properties, to a greater or lesser de-
gree, toward the result for an ideal-gas mixture. An ideal gas

mixture produces V̄i=�−1, 
T=
T
ig, and Q11=1. To better ex-

plain the biases in both methods, we present in Figs. 3 and 4
additional detail at one composition point �y1=0.4� on the
results and procedure for the respective methods. Simula-
tions where N=1200 and N=4000 are included in order to
assess system-size effects.

Figure 3�a� gives the unsmoothed elements of matrix S
=A−1, which come from running KB integrals. Each Sij value
is proportional to the corresponding Gij value, and so these

curves contain the same information on fluid structure found
in KB integrals. The other thermodynamic properties, shown
in parts �b� through �d�, are in turn derived from the Sij
curves. Circles in Fig. 3 indicate the distance cutoff fre-
quently employed by practitioners of traditional KB theory.
This cutoff, while certainly convenient, does not necessarily
lead to the most reliable results in a closed periodic system.
Recall that beyond this point �rc0.5L� we are taking the
KB integrals into the corners of the cube according to Eq.
�23�, and so the maximum evaluation distance is rm
=�0.75L for each simulation. At this end point all unique
pairs of molecules have been included exactly once in the
KB integrals and Gij�rm�=0 for a closed system, which is a
consequence of mass conservation. An ideal-gas mixture is
defined by all Gij =0. Thus, at the two radial limits of rc=0
and rc=�0.75L in Fig. 3 we have ideal-gas-mixture behavior
with Sij =�ijyi. It is clear from the curves that either neglect
of molecular interactions �on the left� or the closed-system
constraint �on the right� increasingly bias the properties as an
end point is approached, leading to the conclusion that the
least amount of bias accrues if one chooses an intermediate
distance for property evaluation. As already indicated the old
KB results in Fig. 2 are based on smoothing of properties
�Eq. �25��; the cutoff was rc=0.45L, a value intended to pro-
duce results least biased toward ideal-gas-mixture behavior.

Under what conditions would the traditional KB method
produce results substantially free of bias or in agreement
with the EOS for our LJ mixture? It is difficult to predict, but
a rough estimate based on the results in Fig. 3 suggests a
system size of at least N=20 000 would be required for the
traditional KB method to match results with the same quality
as obtained by the new KB method for N=1200. Such an
undertaking is beyond the scope of the present work.

E. Analysis of the Fourier KB method

Figure 4 provides an elaboration of the procedures to cal-
culate the new KB results in Fig. 2. With this Fourier method
we calculate and average a full set of Sij and corresponding
thermodynamic properties �the open symbols in Fig. 4� for a
range of discrete q values. Then we extrapolate to the q=0 or
thermodynamic limit, which in principle eliminates the bi-
ases of simulating in a closed finite system. However, ex-
trapolation is always a hazardous affair—in addition to the
inherent amplification of sample noise, there can be a sys-
tematic bias due to an incorrectly assumed functionality as
q→0.

We attempted several different extrapolation procedures,
including one based on Ornstein-Zernicke theory. By com-
bining the Fourier transform of the multicomponent
Ornstein-Zernicke equation �23� with Eq. �4�, we obtain

�C = Y−1 − S−1, �26�

where C�q� is a matrix of Fourier transforms of pairwise
direct correlation functions cij�r�. With Eq. �26� we can ob-
tain C�q� from simulated S�q� values. The postulated asymp-
total form of the direct correlation function, consistent with
commonly used closure relations for pure-component fluids,
is limr→� c�r�=−��r� / �kBT�, where � is the pairwise inter-
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molecular potential �10�. If we assume that cij�r� is finite at
small r values and transitions to cij�r��r−6 at large r values
�based on the long-range dispersion interaction�, we arrive at

Cij�q� = Cij
A + Cij

Bq2 + O�q3� , �27�

where Cij
A and Cij

B are constants that depend on intermolecu-
lar potentials and the state point in a complicated way. We
therefore truncated Eq. �27� at second order and took Cij

A and
Cij

B to be adjustable fitting parameters �six independent val-
ues� to match Eq. �27� to simulated C�q� values. Unfortu-
nately, this predicted asymptotal functionality did not fit the
data well, as is shown in Fig. 5. One possible cause is the
proximity of our simulated state point to a critical point;
critical points are known to violate an assumption used to
generate the asymptotal form of c�r� �10�. More specifically,
the cij�r� may not approach their asymptotal forms rapidly
enough for Eq. �27� to be accurate for the range of q values
examined in this work.

In the end we arrived at the following empirical extrapo-
lation procedure that fits the simulated data well and appears
to produce relatively little bias for q→0 as shown in Figs. 2
and 4. Rather than extrapolate directly the Cij�q� or raw
Sij�q� values, we instead calculated the three independent

properties V̄1, 
T, and Q11 from simulated Sij�q� and fit the

three with separate functions of q: V̄1�q�=V1
A+V1

Bq2, 
T
−1�q�

=KT
A+KT

Bq+KT
Cq3, and Q11�q�=Q11

A +Q11
B q. This means we

had a total of seven adjustable fitting parameters
�V1

A ,V1
B ,KT

A ,KT
B ,KT

C ,Q11
A ,Q11

B �. The reason for correlating
with the inverse of 
T, also known as the bulk modulus, is
that this function is bounded or analytic even at critical

points, as are V̄i, Qij, and Cij.
Although not necessary, for pedagogical purposes we took

the fitted curves and, using the inversion procedure of Eq.
�11�, produced the equivalent fitted curves for Sij�q� shown
in Fig. 4�a�. All of the curves in Fig. 4 are based on the N
=1200 simulation points. The data from the larger simulation
are quite consistent with those for the smaller simulation and
corresponding fitted curves �not shown� yield essentially the
same q=0 intercepts, as is apparent from the points at y1
=0.4 in Fig. 2. Obviously this empirical extrapolation proce-
dure is not perfect and hence some small biases relative to
the LJ EOS remain.

For the sake of completeness, we show in Fig. 5 a com-
parison of simulated �Cij�q� values and the corresponding
fitting curves using the empirical and asymptotic forms. In
both cases the fits were made to the N=1200 simulation data
only. The empirical fits �solid lines� were generated from the

curves for V̄1, 
T, and Q11, as was done in Fig. 4�a�. The
asymptotic fits �broken lines� are least-squares fits of Eq.
�27� to the simulated C values. The empirical fits are consis-
tent with the N=4000 results and appear to provide a much
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more reliable extrapolation to q=0 than do the asymptotic
fits for a similar number of adjustable fitting parameters.

V. CONCLUSION

The original formulation of Kirkwood-Buff solution
theory provides a molecule-centered picture of fluctuations.
The Fourier method implemented here provides a
simulation-cell- or laboratory-frame-based picture of fluctua-
tions. Each gives distinct information about the fluid hetero-
geneities and in principle should lead to the same values of
thermodynamic derivatives.

KB solution theory formally requires an open system, but
the theory is nevertheless frequently applied to closed sys-
tems. The biases in the running KB integrals �and subsequent
thermodynamic properties� at large r values are manifesta-
tions of the principal that gij�r→��=1 is violated for closed
systems. One is assured that in the thermodynamic limit �N
→�� the statistical mechanical distinctions between open
and closed systems are erased. This means that the original
KB theory when incorrectly applied to a closed system nev-
ertheless converges to the correct solution with increasing N.
Yet, one wishes to adopt methods where this convergence is
improved. This work demonstrates an implementation of KB
theory that fills such a need. For NVT systems the method
appears to be more accurate in calculating macroscopic ther-
modynamic derivatives than the old method, and it may have
advantages for other ensembles �including open systems� as
well although that was not examined here. In any case, nei-
ther the old nor new KB methods add much computational
overhead, and so both can be included in a computer simu-
lation code to enable comparisons to be made.

We showed how to extend KB integrals into the corners
of the simulation cell in order to make maximal use of avail-
able information on radial pair correlations under the old KB
method. When one changes the cut-off distance rc, one
changes the range over which pair correlations are included
but also the degree to which the constraint of a closed system
is imposed upon the KB integral values. It is difficult to
decouple spatially these two effects unless the system size is
quite large. Small-wavelength fluctuations in pair correla-
tions can be moderated by a smoothing procedure. Correct-
ing for the closed-system constraint is more problematic.
Simply truncating Kirkwood Buff integrals at rc=0.5L, as is
commonly done, is not a rigorous solution to the closed-
system problem but merely disguises or neglects it. One can-
not avoid the fact that for any finite closed system the tradi-
tional KB method gives results that are biased toward ideal-
gas-mixture values.

In this work we simulated a simple system representing
the nonideal liquid mixture of CF4 and CH4, for which ref-
erence correlations of mixture properties are available. We
did not intend to fully explore the phase diagram of this
mixture nor to come up with the most realistic intermolecular
potentials; however, the spherically symmetric LJ potentials
used here appear to capture quite accurately volumetric and
free-energy-related properties for this system.

Simulating near a critical point can be particularly chal-
lenging; even though we simulated ostensibly in a single-
phase region about 20 K above the liquid-liquid critical
point, we observed strong molecular fluctuations and occa-
sional demixing. This necessitated long equilibration and
simulation times for reliable single-phase results. The strong
nonideality also made extrapolation of Fourier quantities to
the q=0 wave vector particularly challenging.

We believe the adaptation or extension of KB theory
given here will better enable simulation of thermodynamic
derivatives for a wide range of molecules and mixtures. Al-
though the Lennard-Jones fluid is often considered a rela-
tively ideal system upon which to test theories, this is not
necessarily the case with respect to KB solution theory. For
instance, water and other small polar molecules simulated
near their triple points have running KB integrals that
dampen and approximately converge to their macroscopic
asymptotal values within about 3 molecular diameter �30�,
compared to 6 or more diameter for LJ fluid.
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